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Molecular-dynamics calculations of the translational dynamic structure factor in liquid CO2 and CD4 are
analyzed by means of the generalized Langevin equation for the intermediate scattering function in the second-
order memory function approximation. We give a rigorous general relation among the decay times of the
memory and the lifetimes of the modes of the density-density correlation function. The comparison of the
various characteristic times among them and with the collision time, carried out as a function of the wave
vector, reveals strong relationships between the memory relaxation and the density-density correlation modes,
some of which have purely “collisional” and other “collective” character. We show that essential information
about the life time of structural properties in a molecular liquid at nanometer dimensions can be obtained if the
time behavior of the correlation function is considered in addition to that of the memory function.
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Experimental and computer simulation studies of transla-
tional collective dynamics of dense fluids approaching the
molecular space-time scales have received continuous atten-
tion in the last decades due to the great interest in under-
standing relaxation processes in the high-frequency regime
�1–4�. A generally accepted data interpretation is still lacking
though. The aim of this Rapid Communication is to shed
light on relaxation phenomena in liquids by showing that a
clear interpretation can be given of the characteristic times
involved in the description of the dynamic structure factor
S�Q ,�� at high wave vector Q.

Molecular fluids have also been extensively studied �4�
through spectroscopic and molecular-dynamics �MD� simu-
lation methods. For such systems it can be argued �5� that the
correlation relevant to translational dynamics is the one be-
tween the molecular centers of mass. Here we consider the
case of CO2 and CD4 in their dense liquid state. Indeed, we
recently reported �5–7� accurate analyses of their transla-
tional dynamics as represented by the carbon-carbon �CC�
partial dynamic structure factor SCC�Q ,�� since in both mol-
ecules the carbon atom occupies the barycentric position.
Such data were calculated by means of MD simulation with
experimentally validated anisotropic intermolecular poten-
tials �8,9�. This is the unique mean we have up to now to
determine the purely translational part of the total S�Q ,�� in
molecular fluids. In the following, all dynamical quantities
will refer to the center-of-mass–center-of-mass correlation
although we shall omit the subscript CC to simplify the no-
tation.

S�Q ,�� spectra are usually analyzed and interpreted in
terms of a generalized Langevin equation of motion for the
intermediate scattering function F�Q , t�, which acquires a hi-
erarchical nature through the definition of a sequence of
memory functions �1�. The closure of the equation hierarchy
is typically carried out at the level of the second-order
memory function M�Q , t�, for which a simple time evolution
is assumed as an “ansatz” defining the model interpretation.

M�Q , t� is customarily built with one or more time exponen-
tials and/or a ��t� function. This choice reflects the physi-
cally sound concept that memory decays in first approxima-
tion exponentially, with ��t� possibly modeling a situation
where the decay is very fast compared to the fluid time scale
set by F�Q , t�. We will not consider here memory functions
containing other forms of time dependence.

When M�Q , t� is modeled as said above, F�Q , t� will
show the presence of properly defined collective modes; one
or more of them are nonpropagating modes decaying expo-
nentially with time, while two others consist of exponentially
damped oscillations corresponding to propagating excita-
tions. Consistently, the spectrum S�Q ,�� is the sum of a
number of quasielastic Lorentzian lines plus two inelastic
�“Brillouin”� lines �6�.

It is worth noting, however, that the presence of a ��t�
term in M�Q , t� leads to an infinite fourth frequency moment
of S�Q ,�� �6�. This can limit considerably the spectral range
in which the data can be theoretically reproduced at the level
of the second-order memory function, which otherwise has
the capability of giving a finite fourth moment as well. In-
deed, as shown below, a memory modeled with one expo-
nential and a � term, such as the one corresponding to lin-
earized hydrodynamic theory �6�, will not be proven
adequate for the cases under study although any valid model
is bound to recover the hydrodynamic theory of fluids in the
Q→0 limit.

We then adopt for M�Q , t� a phenomenological time evo-
lution made of two exponentials, which, as shown below,
turns out to be the minimum required for an accurate de-
scription of the spectral data. This approach leads to the in-
troduction of an extra relaxation mode in F�Q , t�, with re-
spect to the hydrodynamic description, which appears to be
necessary to correctly interpret the spectra of collective
modes for Q in the range between �0.1Qp and �0.8Qp.
Here Qp is the main peak position of the static structure
factor S�Q�, i.e., the frequency integral of S�Q ,��. The de-
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tailed analysis of the Q dependence of all the quantities
which define either the memory model or the spectral distri-
bution allows to disclose the existence of quantitative con-
nections among the various times involved in the behavior of
M�Q , t� and F�Q , t�.

The so-called viscoelastic �VE� model for M�Q , t� is

M�Q,t� = ��L
2�Q� − ��Q���Q

2 ��exp�− t/��Q�� + ���Q� − 1�

���Q
2 �exp�− t/�T�Q�� , �1�

where ��Q
2 � is the normalized second frequency moment of

S�Q ,��, �L
2�Q� is the ratio of fourth to second spectral mo-

ment, and ��Q� is a Q-dependent generalization of the ther-
modynamic specific-heat ratio �0. These parameters define
the amplitudes of the two exponential terms of M�Q , t�,
whose characteristic times are ��Q� and �T�Q�.

All the above quantities tend to their respective hydrody-
namic expressions for Q→0 so that ��Q

2 ��cs
2Q2 /�0,

�L
2�Q��cL

2Q2, and �T�Q��1 / ��0DTQ2�, where cL is the
Q→0 limit of the infinite-frequency sound velocity, cs is the
adiabatic sound speed, and DT is the thermal diffusivity. The
Q→0 limit of ��Q� is given by �0=� / �cL

2 −cs
2�, where � is the

kinematic longitudinal viscosity.
For ease of reference, we denote the two terms of the

memory �1� as “viscous” and “thermal,” extending to the
whole Q range the meaning that they assume in the Q→0
limit where � and �T are directly bound to viscosity and
thermal diffusion, respectively, although such identifications
become less stringent when a nonhydrodynamic regime is
attained with increasing Q.

The general expression of the spectrum

S�Q,�� =
S�Q�

�
Re�i� +

��Q
2 �

i� + M̃�Q,i��
	−1

, �2�

where M̃�Q ,z� is the Laplace transform of M�Q , t�, takes in
the VE case the form �6�

S�Q,�� =
S�Q�

�
�I1

z1

z1
2 + �2 + I2

z2

z2
2 + �2 + Is

zs + bs�� + �s�
zs

2 + �� + �s�2

+ Is
zs − bs�� − �s�
zs

2 + �� − �s�2 	 �3�

made of two nonpropagating plus two propagating modes.
The corresponding time correlation is

F�Q,t�
F�Q,0�

= I1e−z1t + I2e−z2t + 2Ise
−zst

cos��st − ��
cos �

, �4�

where bs and � are defined as in Ref. �6�. For the sake of
simplicity the Q dependence of the parameters of M�Q , t�
and S�Q ,�� will not be indicated in the following.

Equation �4� shows that the translational time correlation
has a damped harmonic oscillator component. We recall �6�
that this is true for the whole class of memory functions
defined by exponential or � functions and that the propaga-
tion �damped� frequency �s is related to two intrinsic prop-
erties of the oscillator, namely, the “self” �undamped� fre-

quency 	 and the damping coefficient zs, by the relation
�s=
	2−zs

2, where 	=
��Q
2 � /z1z2��T if model �1� is

assumed.
MD S�Q ,�� data were calculated for 28 Q values be-

tween 2.0 and 15.9 nm−1 in CD4 at n=16.6 nm−3 and
T=97.7 K and for 58 Q values between 1.4 and 14.9 nm−1

in CO2 at n=15.88 nm−3 and T=221.9 K, where n is the
molecular number density and T the temperature. Details of
the computer calculation method have already been given
�5,8�. The analysis is based on fitting line shape �Eq. �3�� to
MD spectra using as free parameters, besides S�Q�, either
those of the memory �Eq. �1�� or directly those of Eq. �3�
itself. In the latter case z1, z2, zs, �s, and I1 are fitted, while
I2, Is, and bs are derived from them �5�. For whatever choice
of the fit parameters, all quantities in both Eqs. �1� and �3�
can be obtained as functions of Q as explained in Refs. �5,6�.
As an example, Fig. 1 shows one CD4 spectrum together
with the line yielding the best fit up to a frequency in the
wings where the intensity decreases to 10−3�S�Q ,0�. The
VE fit is very good at all Qs for both liquids. In Fig. 1 we
also show the inadequacy of the best fit obtained with a
simpler hydrodynamiclike M�Q , t� model where the first ex-
ponential is replaced by a ��t� term, which reduces the num-
ber of spectral lines to three �6�.

Figure 2 displays 	, zs, and �s versus Q and shows that
propagation is maintained ��s
0� up to Q�14 nm−1 in
CO2 and Q�15.5 nm−1 in CD4. Beyond such Q values
propagation is forbidden ��s=0� because 	 either stops in-
creasing with Q �CO2� or begins to decrease �CD4� leading
to 	�zs and bringing the oscillator into its overcritical
damping state. When this happens, Eqs. �3� and �4� are modi-
fied as explained in Ref. �5�.

We next discuss in detail the Q dependence of the time
decay constants relevant for the collective dynamics. Besides
�T and �, we consider the life times of the modes of F�Q , t�
or S�Q ,�� defined as �1=1 /z1, �2=1 /z2, and �s=1 /zs. In
Eqs. �61a� and �68a� of Ref. �6� we showed that, with the
assumption of the memory model �1�, the rigorous relation
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FIG. 1. MD simulated center-of-mass S�Q ,�� of CD4 at
Q=8.2 nm−1 �error bars�. The thin line is the VE best fit, and the
thick line is the best fit obtained with a hydrodynamiclike memory
model �see text�.
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1/�T + 1/� = 1/�1 + 1/�2 + 2/�s �5�

is obeyed, which highlights that the parallel decay of the
memory into two channels implies the parallel decay of the
correlation into four channels, with conservation of the total
decay frequency.

Figure 3 shows the Q dependence of the various �s and,
for comparison, the value of the Enskog mean free time tE
which provides an estimate of the collision time in a liquid
taking into account its structural properties. For a fluid of
hard spheres with diameter d, tE=
m /�kBT / �4nd2g�d��,
where m is the molecular mass, kB is the Boltzmann constant,
and g�d� is the pair distribution function at contact. In our
real molecular systems, an effective diameter d has been es-
timated by fitting at best the hard sphere S�Q� �10� to MD
results, obtaining d=0.354 nm and tE=0.107 ps for CO2
and d=0.379 nm and tE=0.056 ps for CD4.

From the results displayed in Fig. 3 we can observe the
following:

�a� An overall deviation from hydrodynamics sets on at
rather low Q. The departure is larger in CD4 than in CO2 and
a transition to clear nonhydrodynamic behavior definitely
takes place around Q�3 and �5 nm−1, respectively. Thus,

when the wavelength of the probed fluctuations becomes of
the order of 1–2 nm, corresponding to volumes containing a
few tens of molecules, all relaxations in both memory and
correlation function change character.

�b� �1 /� and �T, which are prescribed by theory to have
the same hydrodynamic limit �6�, actually coincide at all Qs.
This fact highlights a close relation between the thermal
memory relaxation and the correlation mode labeled as 1.

�c� �T and � differ by at least one order of magnitude in
the whole Q range, therefore describing two distinct pro-
cesses in the memory relaxation, with the thermal one decay-
ing much more slowly than the viscous one. The latter ap-
pears to be directly related to binary collisions since �� tE,
while the slow relaxation of the thermal process suggests that
more collisions, therefore more molecules, are involved in
the decay of the correlation.

�d� The memory fast decay time � decreases smoothly
with increasing Q and shows a plateau between Q�5 and
�8 nm−1, where correlation distances of the order of 1 nm
are probed. Interestingly, in this Q range a clear change oc-
curs in the relation of � with the time decay of the correlation
mode labeled as 2 and with the life time of the propagating
modes. At high Q, we find ���s /2, indicating that the damp-
ing of the propagating modes changes continuously from a
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FIG. 2. Parameters of the damped harmonic oscillator representing the propagating modes. �a� 	 �open circles� and zs �full circles�, with
the respective lowest-order hydrodynamic behaviors csQ �solid line� and ���0−1�DT+��Q2 /2 �dotted line�. Data refer to CO2. �b� The same
as in �a� for CD4. �c� Dispersion curve �s for CO2 �full squares� and CD4 �open squares� with the respective lowest-order hydrodynamic
behavior csQ �dotted line for CO2, solid line for CD4�. For the values of cs, �0, DT, and � see Refs. �5,11�.
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FIG. 3. Characteristic times of M�Q , t� and F�Q , t�. �a� �T �dots with error bars� and �1 /� �open circles�. CO2 data are the upper curves;
CD4 plots are shifted downwards by one decade for graphical convenience. Solid lines give the lowest-order hydrodynamic behavior
1 / ��0DTQ2�. �b� �1 �full squares�, �2 �stars�, �s /2 �open circles�, and � �dots� for CO2. Solid lines give the lowest-order hydrodynamic
behavior 1 / �DTQ2� of �1 and 1 / ���0−1�DT+��Q2 of �s /2. The short line on the right side marks the value of tE. �c� The same as in �b� for
CD4.
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hydrodynamic character at low Q into a behavior dominated
by the fast memory relaxation process which in turn is due to
binary collisions as shown above.

�e� On the other hand, �2 behaves like � at low Q, show-
ing that the fast memory relaxation is reflected in the decay
of a nonpropagating correlation mode but clearly increases,
more evidently in CO2, up to a practically constant value at
high Q which is largely above the collision time, namely up
to �2�3tE. Such a change to a “long” living nonpropagating
mode in F�Q , t� suggests the existence in the liquid of clus-
ters with dimensions of order 1 nm3 or less with life time �2
quite larger than the collision time. However, such micro-
scopic structures do not affect the life time �s of propagating
excitations, which remains of the order of tE.

In conclusion, we have shown that a suitably modeled
memory function explains in detail the translational dynam-
ics of simple molecular liquids determined through the
center-of-mass dynamic structure factor simulated with ex-
perimentally tested pair anisotropic potentials. For both stud-
ied liquids, a VE modeling proves adequate in the Q range
up to Q�Qp and reveals strong relations among the charac-

teristic times of M�Q , t� and F�Q , t�. The first nonpropagat-
ing correlation mode directly reflects the decay of the
thermal part of the memory function. The second nonpropa-
gating mode and the pair of propagating modes that give rise
to the Brillouin spectral lines are both related in different Q
ranges to the faster decay process in the memory, which is
dominated by binary collisions. A transition from a colli-
sional to a collective behavior of �2 is detected, which can be
interpreted as the evidence that nanoscale clusters with life
time of the order of a few tenths of picosecond do exist in the
liquid. Such a transition occurs at Q values slightly larger
than those where the onset of nonhydrodynamic behavior
takes place.

Our approach also shows that the analysis of the Q de-
pendence of the memory time constants provides only a lim-
ited picture of the evolution of structural properties at the
nanometer scale, while a far deeper insight can be obtained if
the time behavior of F�Q , t� is also explored. In this way, for
example, important information on structural relaxations
contained in the second nonpropagating spectral mode can
be evidenced.
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